extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1S32 = C12.D12 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).1S3^2 | 288,206 |
(C2xC4).2S32 = C12.70D12 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 24 | 4+ | (C2xC4).2S3^2 | 288,207 |
(C2xC4).3S32 = C12.14D12 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).3S3^2 | 288,208 |
(C2xC4).4S32 = C12.71D12 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4- | (C2xC4).4S3^2 | 288,209 |
(C2xC4).5S32 = D12:20D6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).5S3^2 | 288,471 |
(C2xC4).6S32 = D12:18D6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 24 | 4+ | (C2xC4).6S3^2 | 288,473 |
(C2xC4).7S32 = D12.32D6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).7S3^2 | 288,475 |
(C2xC4).8S32 = D12.28D6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).8S3^2 | 288,478 |
(C2xC4).9S32 = D12.29D6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4- | (C2xC4).9S3^2 | 288,479 |
(C2xC4).10S32 = Dic6.29D6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).10S3^2 | 288,481 |
(C2xC4).11S32 = C62.9C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).11S3^2 | 288,487 |
(C2xC4).12S32 = C62.10C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).12S3^2 | 288,488 |
(C2xC4).13S32 = Dic3.Dic6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).13S3^2 | 288,493 |
(C2xC4).14S32 = C62.16C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).14S3^2 | 288,494 |
(C2xC4).15S32 = C62.17C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).15S3^2 | 288,495 |
(C2xC4).16S32 = C62.18C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).16S3^2 | 288,496 |
(C2xC4).17S32 = C62.24C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).17S3^2 | 288,502 |
(C2xC4).18S32 = C62.28C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).18S3^2 | 288,506 |
(C2xC4).19S32 = C62.31C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).19S3^2 | 288,509 |
(C2xC4).20S32 = C62.54C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).20S3^2 | 288,532 |
(C2xC4).21S32 = C62.55C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).21S3^2 | 288,533 |
(C2xC4).22S32 = Dic3:D12 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).22S3^2 | 288,534 |
(C2xC4).23S32 = D6:1Dic6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).23S3^2 | 288,535 |
(C2xC4).24S32 = C62.58C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).24S3^2 | 288,536 |
(C2xC4).25S32 = D6.D12 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).25S3^2 | 288,538 |
(C2xC4).26S32 = D6.9D12 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).26S3^2 | 288,539 |
(C2xC4).27S32 = D6:2Dic6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).27S3^2 | 288,541 |
(C2xC4).28S32 = C62.65C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).28S3^2 | 288,543 |
(C2xC4).29S32 = D6:3Dic6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).29S3^2 | 288,544 |
(C2xC4).30S32 = C62.67C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).30S3^2 | 288,545 |
(C2xC4).31S32 = D6:4Dic6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).31S3^2 | 288,547 |
(C2xC4).32S32 = C62.77C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).32S3^2 | 288,555 |
(C2xC4).33S32 = Dic3:3D12 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).33S3^2 | 288,558 |
(C2xC4).34S32 = C62.83C23 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).34S3^2 | 288,561 |
(C2xC4).35S32 = D12.33D6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).35S3^2 | 288,945 |
(C2xC4).36S32 = D12.34D6 | φ: S32/C32 → C22 ⊆ Aut C2xC4 | 48 | 4- | (C2xC4).36S3^2 | 288,946 |
(C2xC4).37S32 = C62.6C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).37S3^2 | 288,484 |
(C2xC4).38S32 = Dic3:5Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).38S3^2 | 288,485 |
(C2xC4).39S32 = C62.20C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).39S3^2 | 288,498 |
(C2xC4).40S32 = D6:Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).40S3^2 | 288,499 |
(C2xC4).41S32 = Dic3.D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).41S3^2 | 288,500 |
(C2xC4).42S32 = C62.29C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).42S3^2 | 288,507 |
(C2xC4).43S32 = C62.37C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).43S3^2 | 288,515 |
(C2xC4).44S32 = C62.38C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).44S3^2 | 288,516 |
(C2xC4).45S32 = S3xDic3:C4 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).45S3^2 | 288,524 |
(C2xC4).46S32 = C62.47C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).46S3^2 | 288,525 |
(C2xC4).47S32 = C62.49C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).47S3^2 | 288,527 |
(C2xC4).48S32 = Dic3:4D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).48S3^2 | 288,528 |
(C2xC4).49S32 = C62.74C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).49S3^2 | 288,552 |
(C2xC4).50S32 = C62.75C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).50S3^2 | 288,553 |
(C2xC4).51S32 = D6:D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).51S3^2 | 288,554 |
(C2xC4).52S32 = C6.16D24 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).52S3^2 | 288,211 |
(C2xC4).53S32 = C6.17D24 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).53S3^2 | 288,212 |
(C2xC4).54S32 = C6.Dic12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).54S3^2 | 288,214 |
(C2xC4).55S32 = C12.73D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).55S3^2 | 288,215 |
(C2xC4).56S32 = D12:2Dic3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).56S3^2 | 288,217 |
(C2xC4).57S32 = C12.80D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).57S3^2 | 288,218 |
(C2xC4).58S32 = C12.Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).58S3^2 | 288,221 |
(C2xC4).59S32 = C6.18D24 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).59S3^2 | 288,223 |
(C2xC4).60S32 = C12.82D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).60S3^2 | 288,225 |
(C2xC4).61S32 = S3xC4.Dic3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).61S3^2 | 288,461 |
(C2xC4).62S32 = D12.2Dic3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).62S3^2 | 288,462 |
(C2xC4).63S32 = C3:C8.22D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).63S3^2 | 288,465 |
(C2xC4).64S32 = C2xC3:D24 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).64S3^2 | 288,472 |
(C2xC4).65S32 = C2xD12.S3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).65S3^2 | 288,476 |
(C2xC4).66S32 = D12.27D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).66S3^2 | 288,477 |
(C2xC4).67S32 = C2xC32:5SD16 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).67S3^2 | 288,480 |
(C2xC4).68S32 = C2xC32:3Q16 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).68S3^2 | 288,483 |
(C2xC4).69S32 = C62.11C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).69S3^2 | 288,489 |
(C2xC4).70S32 = Dic3xDic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).70S3^2 | 288,490 |
(C2xC4).71S32 = Dic3:6Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).71S3^2 | 288,492 |
(C2xC4).72S32 = D6:6Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).72S3^2 | 288,504 |
(C2xC4).73S32 = D6:7Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).73S3^2 | 288,505 |
(C2xC4).74S32 = C12.27D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).74S3^2 | 288,508 |
(C2xC4).75S32 = C12.28D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).75S3^2 | 288,512 |
(C2xC4).76S32 = Dic3:Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).76S3^2 | 288,514 |
(C2xC4).77S32 = C62.39C23 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).77S3^2 | 288,517 |
(C2xC4).78S32 = S3xC4:Dic3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).78S3^2 | 288,537 |
(C2xC4).79S32 = Dic3xD12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).79S3^2 | 288,540 |
(C2xC4).80S32 = Dic3:5D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).80S3^2 | 288,542 |
(C2xC4).81S32 = D6:2D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).81S3^2 | 288,556 |
(C2xC4).82S32 = C12:7D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).82S3^2 | 288,557 |
(C2xC4).83S32 = C12:D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).83S3^2 | 288,559 |
(C2xC4).84S32 = C12:3Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).84S3^2 | 288,566 |
(C2xC4).85S32 = C2xS3xDic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).85S3^2 | 288,942 |
(C2xC4).86S32 = C2xD12:5S3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).86S3^2 | 288,943 |
(C2xC4).87S32 = C2xD6.6D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).87S3^2 | 288,949 |
(C2xC4).88S32 = C62.8C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).88S3^2 | 288,486 |
(C2xC4).89S32 = C62.23C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).89S3^2 | 288,501 |
(C2xC4).90S32 = C62.32C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).90S3^2 | 288,510 |
(C2xC4).91S32 = C62.35C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).91S3^2 | 288,513 |
(C2xC4).92S32 = C62.40C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).92S3^2 | 288,518 |
(C2xC4).93S32 = C62.48C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).93S3^2 | 288,526 |
(C2xC4).94S32 = C62.51C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).94S3^2 | 288,529 |
(C2xC4).95S32 = C62.53C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).95S3^2 | 288,531 |
(C2xC4).96S32 = C62.72C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).96S3^2 | 288,550 |
(C2xC4).97S32 = C62.82C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).97S3^2 | 288,560 |
(C2xC4).98S32 = C62.85C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).98S3^2 | 288,563 |
(C2xC4).99S32 = D12:3Dic3 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).99S3^2 | 288,210 |
(C2xC4).100S32 = Dic6:Dic3 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).100S3^2 | 288,213 |
(C2xC4).101S32 = D12:4Dic3 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 24 | 4 | (C2xC4).101S3^2 | 288,216 |
(C2xC4).102S32 = C12.6Dic6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).102S3^2 | 288,222 |
(C2xC4).103S32 = C12.8Dic6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).103S3^2 | 288,224 |
(C2xC4).104S32 = C62.5Q8 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).104S3^2 | 288,226 |
(C2xC4).105S32 = D12.Dic3 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).105S3^2 | 288,463 |
(C2xC4).106S32 = C3:C8:20D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 24 | 4 | (C2xC4).106S3^2 | 288,466 |
(C2xC4).107S32 = C2xC32:2D8 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).107S3^2 | 288,469 |
(C2xC4).108S32 = D12.30D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).108S3^2 | 288,470 |
(C2xC4).109S32 = C2xDic6:S3 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).109S3^2 | 288,474 |
(C2xC4).110S32 = C2xC32:2Q16 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).110S3^2 | 288,482 |
(C2xC4).111S32 = C62.13C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).111S3^2 | 288,491 |
(C2xC4).112S32 = C62.19C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).112S3^2 | 288,497 |
(C2xC4).113S32 = C62.33C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).113S3^2 | 288,511 |
(C2xC4).114S32 = C12.30D12 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).114S3^2 | 288,519 |
(C2xC4).115S32 = C62.42C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).115S3^2 | 288,520 |
(C2xC4).116S32 = C62.43C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).116S3^2 | 288,521 |
(C2xC4).117S32 = D12:Dic3 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).117S3^2 | 288,546 |
(C2xC4).118S32 = C62.70C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).118S3^2 | 288,548 |
(C2xC4).119S32 = C62.84C23 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).119S3^2 | 288,562 |
(C2xC4).120S32 = C12:2D12 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).120S3^2 | 288,564 |
(C2xC4).121S32 = C12:Dic6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).121S3^2 | 288,567 |
(C2xC4).122S32 = C2xD12:S3 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).122S3^2 | 288,944 |
(C2xC4).123S32 = C2xDic3.D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).123S3^2 | 288,947 |
(C2xC4).124S32 = Dic3xC3:C8 | central extension (φ=1) | 96 | | (C2xC4).124S3^2 | 288,200 |
(C2xC4).125S32 = C6.(S3xC8) | central extension (φ=1) | 96 | | (C2xC4).125S3^2 | 288,201 |
(C2xC4).126S32 = C3:C8:Dic3 | central extension (φ=1) | 96 | | (C2xC4).126S3^2 | 288,202 |
(C2xC4).127S32 = C2.Dic32 | central extension (φ=1) | 96 | | (C2xC4).127S3^2 | 288,203 |
(C2xC4).128S32 = C12.77D12 | central extension (φ=1) | 96 | | (C2xC4).128S3^2 | 288,204 |
(C2xC4).129S32 = C12.78D12 | central extension (φ=1) | 48 | | (C2xC4).129S3^2 | 288,205 |
(C2xC4).130S32 = C12.81D12 | central extension (φ=1) | 96 | | (C2xC4).130S3^2 | 288,219 |
(C2xC4).131S32 = C12.15Dic6 | central extension (φ=1) | 96 | | (C2xC4).131S3^2 | 288,220 |
(C2xC4).132S32 = C2xS3xC3:C8 | central extension (φ=1) | 96 | | (C2xC4).132S3^2 | 288,460 |
(C2xC4).133S32 = C2xC12.29D6 | central extension (φ=1) | 48 | | (C2xC4).133S3^2 | 288,464 |
(C2xC4).134S32 = C2xD6.Dic3 | central extension (φ=1) | 96 | | (C2xC4).134S3^2 | 288,467 |
(C2xC4).135S32 = C2xC12.31D6 | central extension (φ=1) | 48 | | (C2xC4).135S3^2 | 288,468 |
(C2xC4).136S32 = C62.25C23 | central extension (φ=1) | 96 | | (C2xC4).136S3^2 | 288,503 |
(C2xC4).137S32 = C62.44C23 | central extension (φ=1) | 48 | | (C2xC4).137S3^2 | 288,522 |
(C2xC4).138S32 = C4xS3xDic3 | central extension (φ=1) | 96 | | (C2xC4).138S3^2 | 288,523 |
(C2xC4).139S32 = C4xC6.D6 | central extension (φ=1) | 48 | | (C2xC4).139S3^2 | 288,530 |
(C2xC4).140S32 = C4xD6:S3 | central extension (φ=1) | 96 | | (C2xC4).140S3^2 | 288,549 |
(C2xC4).141S32 = C4xC3:D12 | central extension (φ=1) | 48 | | (C2xC4).141S3^2 | 288,551 |
(C2xC4).142S32 = C4xC32:2Q8 | central extension (φ=1) | 96 | | (C2xC4).142S3^2 | 288,565 |
(C2xC4).143S32 = C2xD6.D6 | central extension (φ=1) | 48 | | (C2xC4).143S3^2 | 288,948 |